Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
نویسندگان
چکیده
منابع مشابه
Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels.
The mechanical environment plays an important role in cell signaling and tissue homeostasis. Unraveling connections between externally applied loads and the cellular response is often confounded by extracellular matrix (ECM) heterogeneity. Image-based multiscale models provide a foundation for examining the fine details of tissue behavior, but they require validation at multiple scales. In this...
متن کاملFEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites
The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...
متن کاملTissue microRNA-126 expression level predicts outcome in human osteosarcoma
BACKGROUND MicroRNA-126 has been found to be consistently under-expressed in osteosarcoma tissues and cell lines compared with normal bone tissues and normal osteoblast cells, respectively. The purpose of the present study was to detect the expression levels of miR-126 in osteosarcoma patients and to further investigate the clinicopathological, and prognostic value of miR-126. METHODS We recr...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملMolecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides
Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomechanical Engineering
سال: 2012
ISSN: 0148-0731,1528-8951
DOI: 10.1115/1.4007097